proteometer.normalization#
Functions#
|
Normalizes and applies batch correction to peptide data. |
|
Normalizes and applies batch correction to peptide data. |
|
Normalizes and applies batch correction to peptide data. |
|
Performs TMT normalization on peptide data. |
|
Performs median normalization on columns of a DataFrame. |
|
Performs median normalization on peptide data. |
|
Applies batch correction to peptide data using row-mean centering. |
Module Contents#
- proteometer.normalization.peptide_normalization(global_pept: pandas.DataFrame, mod_pept: pandas.DataFrame, int_cols: list[str], par: proteometer.params.Params) pandas.DataFrame [source]#
Normalizes and applies batch correction to peptide data.
- Parameters:
- Returns:
Normalized and batch-corrected peptide data.
- Return type:
pd.DataFrame
- proteometer.normalization.peptide_batch_correction(mod_pept: pandas.DataFrame, metadata: pandas.DataFrame, par: proteometer.params.Params) pandas.DataFrame [source]#
Normalizes and applies batch correction to peptide data.
- Parameters:
- Returns:
Normalized and batch-corrected peptide data.
- Return type:
pd.DataFrame
- proteometer.normalization.peptide_normalization_and_correction(global_pept: pandas.DataFrame, mod_pept: pandas.DataFrame, int_cols: list[str], metadata: pandas.DataFrame, par: proteometer.params.Params) pandas.DataFrame [source]#
Normalizes and applies batch correction to peptide data.
- Parameters:
- Returns:
Normalized and batch-corrected peptide data.
- Return type:
pd.DataFrame
- proteometer.normalization.tmt_normalization(df2transform: pandas.DataFrame, global_pept: pandas.DataFrame, int_cols: list[str]) pandas.DataFrame [source]#
Performs TMT normalization on peptide data.
- proteometer.normalization.median_normalize_columns(df: pandas.DataFrame, cols: list[str], skipna: bool = True, zero_center: bool = False) pandas.DataFrame [source]#
Performs median normalization on columns of a DataFrame.
- Parameters:
- Returns:
Median-normalized DataFrame.
- Return type:
pd.DataFrame
- proteometer.normalization.median_normalization(df: pandas.DataFrame, int_cols: list[str], metadata: pandas.DataFrame | None = None, batch_correct_samples: collections.abc.Iterable[str] | pandas.Series[str] | None = None, batch_col: str | None = None, sample_col: str = 'Sample', skipna: bool = True, zero_center: bool = False) pandas.DataFrame [source]#
Performs median normalization on peptide data.
- Parameters:
df (pd.DataFrame) – DataFrame to transform.
metadata_ori (pd.DataFrame | None, optional) – Metadata for batch correction. Defaults to None.
batch_correct_samples (Iterable[str] | pd.Series[str] | None, optional) – Samples to correct. Defaults to None.
batch_col (str | None, optional) – Batch column name. Defaults to None.
sample_col (str, optional) – Sample column name. Defaults to “Sample”.
skipna (bool, optional) – Whether to skip NaN values. Defaults to True.
zero_center (bool, optional) – Whether to zero-center the data. Defaults to False.
- Returns:
Median-normalized DataFrame.
- Return type:
pd.DataFrame
- proteometer.normalization.batch_correction(df4batcor: pandas.DataFrame, metadata: pandas.DataFrame, batch_correct_samples: collections.abc.Iterable[str] | pandas.Series[str] | None = None, batch_col: str = 'Batch', sample_col: str = 'Sample') pandas.DataFrame [source]#
Applies batch correction to peptide data using row-mean centering.
- Parameters:
df4batcor (pd.DataFrame) – DataFrame to correct.
metadata (pd.DataFrame) – Metadata for batch correction.
batch_correct_samples (Iterable[str] | pd.Series[str] | None, optional) – Samples (column names) to correct. Defaults to None, in which case it is all samples as defined in metadata.
batch_col (str, optional) – Batch column name. Defaults to “Batch”.
sample_col (str, optional) – Sample column name. Defaults to “Sample”.
- Returns:
Batch-corrected DataFrame.
- Return type:
pd.DataFrame