proteometer.normalization ========================= .. py:module:: proteometer.normalization Functions --------- .. autoapisummary:: proteometer.normalization.peptide_normalization proteometer.normalization.peptide_batch_correction proteometer.normalization.peptide_normalization_and_correction proteometer.normalization.tmt_normalization proteometer.normalization.median_normalize_columns proteometer.normalization.median_normalization proteometer.normalization.batch_correction Module Contents --------------- .. py:function:: peptide_normalization(global_pept: pandas.DataFrame, mod_pept: pandas.DataFrame, int_cols: list[str], par: proteometer.params.Params) -> pandas.DataFrame Normalizes and applies batch correction to peptide data. :param global_pept: Global peptide data. :type global_pept: pd.DataFrame :param mod_pept: Modified peptide data. :type mod_pept: pd.DataFrame :param int_cols: List of intensity column names. :type int_cols: list[str] :param metadata: Metadata for batch correction. :type metadata: pd.DataFrame :param par: Parameters object containing experiment settings. :type par: Params :returns: Normalized and batch-corrected peptide data. :rtype: pd.DataFrame .. py:function:: peptide_batch_correction(mod_pept: pandas.DataFrame, metadata: pandas.DataFrame, par: proteometer.params.Params) -> pandas.DataFrame Normalizes and applies batch correction to peptide data. :param global_pept: Global peptide data. :type global_pept: pd.DataFrame :param mod_pept: Modified peptide data. :type mod_pept: pd.DataFrame :param int_cols: List of intensity column names. :type int_cols: list[str] :param metadata: Metadata for batch correction. :type metadata: pd.DataFrame :param par: Parameters object containing experiment settings. :type par: Params :returns: Normalized and batch-corrected peptide data. :rtype: pd.DataFrame .. py:function:: peptide_normalization_and_correction(global_pept: pandas.DataFrame, mod_pept: pandas.DataFrame, int_cols: list[str], metadata: pandas.DataFrame, par: proteometer.params.Params) -> pandas.DataFrame Normalizes and applies batch correction to peptide data. :param global_pept: Global peptide data. :type global_pept: pd.DataFrame :param mod_pept: Modified peptide data. :type mod_pept: pd.DataFrame :param int_cols: List of intensity column names. :type int_cols: list[str] :param metadata: Metadata for batch correction. :type metadata: pd.DataFrame :param par: Parameters object containing experiment settings. :type par: Params :returns: Normalized and batch-corrected peptide data. :rtype: pd.DataFrame .. py:function:: tmt_normalization(df2transform: pandas.DataFrame, global_pept: pandas.DataFrame, int_cols: list[str]) -> pandas.DataFrame Performs TMT normalization on peptide data. :param df2transform: DataFrame to transform. :type df2transform: pd.DataFrame :param global_pept: Global peptide data for reference. :type global_pept: pd.DataFrame :param int_cols: List of intensity column names. :type int_cols: list[str] :returns: TMT-normalized DataFrame. :rtype: pd.DataFrame .. py:function:: median_normalize_columns(df: pandas.DataFrame, cols: list[str], skipna: bool = True, zero_center: bool = False) -> pandas.DataFrame Performs median normalization on columns of a DataFrame. :param df: DataFrame to transform. :type df: pd.DataFrame :param cols: List of column names to normalize. :type cols: list[str] :param skipna: Whether to skip NaN values. Defaults to True. :type skipna: bool, optional :param zero_center: Whether to zero-center the data. Defaults to False. :type zero_center: bool, optional :returns: Median-normalized DataFrame. :rtype: pd.DataFrame .. py:function:: median_normalization(df: pandas.DataFrame, int_cols: list[str], metadata: pandas.DataFrame | None = None, batch_correct_samples: collections.abc.Iterable[str] | pandas.Series[str] | None = None, batch_col: str | None = None, sample_col: str = 'Sample', skipna: bool = True, zero_center: bool = False) -> pandas.DataFrame Performs median normalization on peptide data. :param df: DataFrame to transform. :type df: pd.DataFrame :param int_cols: List of intensity column names. :type int_cols: list[str] :param metadata_ori: Metadata for batch correction. Defaults to None. :type metadata_ori: pd.DataFrame | None, optional :param batch_correct_samples: Samples to correct. Defaults to None. :type batch_correct_samples: Iterable[str] | pd.Series[str] | None, optional :param batch_col: Batch column name. Defaults to None. :type batch_col: str | None, optional :param sample_col: Sample column name. Defaults to "Sample". :type sample_col: str, optional :param skipna: Whether to skip NaN values. Defaults to True. :type skipna: bool, optional :param zero_center: Whether to zero-center the data. Defaults to False. :type zero_center: bool, optional :returns: Median-normalized DataFrame. :rtype: pd.DataFrame .. py:function:: batch_correction(df4batcor: pandas.DataFrame, metadata: pandas.DataFrame, batch_correct_samples: collections.abc.Iterable[str] | pandas.Series[str] | None = None, batch_col: str = 'Batch', sample_col: str = 'Sample') -> pandas.DataFrame Applies batch correction to peptide data using row-mean centering. :param df4batcor: DataFrame to correct. :type df4batcor: pd.DataFrame :param metadata: Metadata for batch correction. :type metadata: pd.DataFrame :param batch_correct_samples: Samples (column names) to correct. Defaults to None, in which case it is all samples as defined in metadata. :type batch_correct_samples: Iterable[str] | pd.Series[str] | None, optional :param batch_col: Batch column name. Defaults to "Batch". :type batch_col: str, optional :param sample_col: Sample column name. Defaults to "Sample". :type sample_col: str, optional :returns: Batch-corrected DataFrame. :rtype: pd.DataFrame