proteometer.quality_control_plots#
Functions#
|
Plots a volcano plot of the data. |
|
Plots a biplot of the data. |
|
Plots a correlation heatmap of the data. |
Module Contents#
- proteometer.quality_control_plots.volcano_plot(df: pandas.DataFrame, comparison: str, ax: matplotlib.axes.Axes | None = None, sig_type: str = 'adj-p', sig_thresh: float = 0.1, max_color_value: float | None = None) matplotlib.axes.Axes [source]#
Plots a volcano plot of the data.
- Parameters:
df (pd.DataFrame) – DataFrame containing the data.
comparison (str) – The comparison to plot.
ax (Axes | None, optional) – Matplotlib Axes object to draw the volcano plot on. If
None
, a new Axes object is created. Defaults toNone
.sig_type (str, optional) – The type of significance to use. Defaults to “adj-p”.
sig_thresh (float, optional) – The significance threshold to use. Defaults to 0.1.
max_color_value (float | None, optional) – Value at which the color scale should stop (symmetrical about zero). If None, the maximum absolute value in the data is used.
- Returns:
The matplotlib Axes object with the plotted volcano plot.
- Return type:
Axes
- proteometer.quality_control_plots.biplot(df: pandas.DataFrame, int_cols: list[str], group_cols: list[list[str]], ax: matplotlib.axes.Axes | None = None) matplotlib.axes.Axes [source]#
Plots a biplot of the data.
- Parameters:
- Returns:
The matplotlib Axes object with the plotted biplot.
- Return type:
Axes
- proteometer.quality_control_plots.correlation_plot(df: pandas.DataFrame, int_cols: list[str], ax: matplotlib.axes.Axes | None = None) matplotlib.axes.Axes [source]#
Plots a correlation heatmap of the data.
- Parameters:
- Returns:
The matplotlib Axes object with the plotted correlation heatmap.
- Return type:
Axes